Moving Your Scrum
Downfield

The Six Essential Traits of the Game

by Gunther Verheyen
independent Scrum Caretaker

April 2020 - September 2023

T Hi Gunther Verheyen w B 0 O [

y
“x
i g § V. ‘
Author of p ! 3 i .y
ul ner Carotakar / 4 ¥
hould 1 -d d . t g
- Scrum - A Pocket Guide » & 3 1 ! ‘
Founder of Ullizee Inc.] * . & .

Period

This publication was composed with utmost care by Gunther Verheyen, independent Scrum
Caretaker for Ullizee-Inc. It is offered here for free and may be copied or used as the reader
sees fit, as long as credit is given to the author and to the way that the six traits blend. Focus
on any individual trait, but understand that isolating and separating traits from one another
will not help you move your Scrum downfield. The author cannot accept any liability given
the deliberate incompleteness and unknown future evolutions of this publication.

Scrum is used to manage an ever-increasing variety of work—in and beyond software and (new)
product development. Despite this wide spread, many seem to get stuck at interpreting and
debating the formal rules of Scrum. As if a language can be learned by studying and discussing
the dictionary. This publication shines a more holistic light on Scrum and focuses on the why of
things—agnostic of the naming of things. It describes the six essential traits that make Scrum
work. These rather implicit traits, too often disregarded, are crucial to get unstuck, evolve to a
more unconsidered use of Scrum and regain focus on the purpose of the game. These traits are
indicative of your Scrum coming to life and the first step to start moving your Scrum downfield.

1. Scrum Is Simple, Yet Sufficient

Scrum supports people in addressing complex
challenges and derive value from them, with value
being a very different purpose than volume is.

Complex challenges are highly unpredictable and
cannot be tackled with predefined or copy-paste
solutions. Scrum is simple in the sense that it
defines no more than a limited set of rules. That
set is sufficient to devise a way of working specific
and fitting to time and context and continually
optimize toward creating the most valuable
outcomes. This does imply revising, adding, and
improving work, management, people, and
organizational practices.

In a nutshell, Scrum requires a Scrum Master to
foster an environment where (repeatedly):

1. A Product Owner orders functions and
solutions for value against an overarching
product vision.

2. Ateam of Developers creates valuable
Increments against an overarching Sprint Goal.

3. All players figure out what to work on next and
how to best organize for that.

Through its minimalistic design, every element in
Scrum serves a purpose. Leaving out parts or not
playing by the rules covers up problems (rather
than expose them) and limits—and eventually
eliminates—substantial benefits.

Many tactics to apply the rules exist. Scrum is a
skeleton process that can wrap new practices and
render existing practices superfluous. Devise,
apply, and tune patterns, practices, and techniques
to better fit, not to twist or overburden your Scrum.

The potential of Scrum unfolds when players play
by the rules that apply and explore how tactics,
interactions, behaviors, and the six essential traits—
of which simplicity is the first-make it work.

Many struggle with the deliberate incompleteness
of Scrum and demand exact instructions that
universally apply-regardless of the people
involved, environment, tools, business, and
markets. This desire for precision contradicts the
complexity of reality and the reality of complexity.

2. Scrum’s DNA

Scrum is grounded in the management principles
of Self-organization and Empiricism. They are
entwined and form Scrum’s DNA.

Moving Your Scrum Downfield
(The Six Essential Traits of the Game)

Self-organization asserts that the people
undertaking complex work know best how to
organize for that work. No external forces can do
that better for them. Scrum sets the boundaries
within which they are invited to use their
intelligence and creativity to act with agility and
collaboratively optimize for valuable outcomes.

Empiricism (or empirical process control) asserts
that forward-looking decisions in complex work
are best based on experience, observed results
and proven outcomes of experimentation. Scrum
implements empiricism via its methodical
approach of inspection and adaptation upon
transparency of the work being undertaken and
results being produced.

Scrum engages people in sharing or acquiring the
insights and skills to collectively perform complex
work (self-organization), while employing an
iterative-incremental approach to make the best
possible progress (empiricism). It requires players
to regularly stop, reflect, gather feedback, and
learn from observation and inspection in order to
continue or change course as needed, in order to
re-organize, improve, adapt.

Self-organization

Self-organization is the process of people forming
organized groups around problems or challenges
without external work plans or instructions being
imposed on them. No single person can know
better how to organize for complex work than a
group of skilled people accountable for that work.
Self-organization is employed when a group of
people collectively organizes, manages, and
performs its work.

Regarding the use of “(Team of)
Developers”

There is no single term that covers all types of
complex work for which Scrum is employed.

In this publication “Team of” is added where
Scrum officially mentions only “Developers.”

Although ‘developer’ applies to all involved in
creating and sustaining a product, it is too easily
misunderstood as (software) programmer.

Although the official “Developers” is plural, the
notion of ‘team’ is explicitly added to emphasize
the need to move as a unit up the field.

A term for the combined Scrum roles, for which
Scrum uses “Scrum Team,” is not used here.

© Gunther Verheyen | Ullizee-Inc Page 3
Apr 2020 - Sep 2023

Self-organization is, it happens. As any human
individual has the inherent quality to self-organize,
self-organization doesn't need to be instructed nor
empowered. Rather, it requires removal of barriers
that prevent people to apply this natural ability.
Impediments to self-organization are not in
people, but in processes, procedures, and
organizational constructs. This is how external
authorities are most effective: by removing
organizational barriers to self-organization.

A shared (visual) workspace is an important
enabler for self-organization. It forms a bounded
environment that allows people to optimize focus,
collaboration, and shared-ness and benefit from
the fastest information exchange possible. Self-
organization is most effective in such workspace.

Empiricism

Empirical process control implies closed-loop
feedback so that actual outcomes are regularly
inspected and validated against desired
outcomes. This is a self-correcting process as
unwanted variances or results are eliminated or

corrected through adaptation in the next or in
future system runs.

Input
s

Exhibit 1: A closed-loop feedback system

System Output |

Feedback

Empiricism requires and creates transparency.
Reality is exposed for inspection purposes in order
to allow sensible adaptations. The player-
inspectors take forward-looking decisions based
on information that reflects their actual situation.
Inspections of incomplete or twisted versions of
reality lead to pointless adaptations—and even
detrimental deviations. Transparency serves the
process of inspection and adaptation and implies
that all required information is available for the
player-inspectors. It does not mean that any piece
of information should be available for anyone.

From the need for transparency follows the need
for standards and agreements to work against and
inspect upon. They are transparent in the sense
that they are agreed, followed, visible, accessible,
and comprehensible. In Scrum, the definition of
Done is particularly important in providing
transparency over work to be done and work
actually done.

The frequency at which inspections and
adaptations are performed should be such that
sufficient work can be performed for meaningful
inspection, while not impeding the opportunity to
adapt to important new insights or evolutions.

3. Players Demonstrate Accountability

A sustainable complex adaptive system does not
spring from individual heroism or from hierarchical

Moving Your Scrum Downfield
(The Six Essential Traits of the Game)

power. It requires people from different
backgrounds and domains combining their skills,
talents, experiences, insights, and personalities to
work, learn, and improve together.

The increased emphasis on peer collaboration
makes leadership more subtle, somewhat
dispersed, and even transient in time and place.
Leadership becomes a distributed quality instead
of an expression of the assertiveness and
dominance of some individual(s).

The complementarity of the accountabilities of
Product Owner, team of Developers, and Scrum
Master instantiates such collaborative spirit. As
they collaborate, they additionally develop new
relationships with consumers, stakeholders, and
others. Tensions are a natural part of this process.

Accountability is not in titles or in functions. It
cannot be demanded or instructed. Rather than
installing measures and means to 'hold people
accountable' Scrum fosters an environment where
self-organizing people demonstrate accountability.

Product Owner

'‘Product Owner’ is a one-person player role to
connect consumers, stakeholders, and teams of
Developers. This is very different from dominating
all communication or preventing direct
interactions. The core accountability is to optimize
value for the people receiving the work, for the
organization funding it, and for the people
performing it. This view on value can be extended
to value to society, the environment, the planet.

‘Product’ is the vehicle to create value. A product is
a tangible or non-tangible good or service, a value
stream, or is something more abstract like the
outcome of specific processes or actions. Without
a clearly identified ‘product’'—and its consumers
and stakeholders—a Product Owner is hardly
effective in optimizing the value delivered. As a
result, Scrum is hardly used effectively.

A Product Owner, self-evidently minding the long-
term viability of the product, leads through a
product vision. A product vision captures why the
product exists. It encapsulates what makes the
product worthwhile buying, consuming, and
investing in. A product vision helps emerge
specific product goals, uncover product functions
and solutions, and validate whether value is
actually being created via product Increments.

A Product Owner orders envisioned functions and
solutions in a Product Backlog and assures that
they are known and understood for how they
potentially deliver value. A Product Owner
represents the needs of many and is the sole
person deciding over ordering the Product
Backlog and spending the game budget.

The Product Owner is accountable, whether doing
the above or having others do it.

Team of Developers

"Team of Developers’ is a multi-person player role
consisting of a group of people self-organizing

© Gunther Verheyen | Ullizee-Inc Page 4
Apr 2020 - Sep 2023

around the challenge of turning functions and
solutions from the Product Backlog into
observable, Done output. The core accountability
is to create such usable and valuable Increments
of product no later than by the end of a Sprint, and
thereby sustain the resultant product.

Teams of Developers work with the Product Owner
in identifying the most important functions and
solutions for a Sprint. They perform and manage
all activities involved in delivering such forecast of
Product Backlog in a Sprint. They work with the
Product Owner as needed to optimize the Sprint's
outcome captured in a Sprint Goal.

Beyond managing their own work, teams of
Developers also self-organize for that work in
terms of size, skills, expertise, and availabilities—by
using the process of inspection and adaptation.

Team size and work organization are such that
teams of Developers work at a sustainable pace, a
pace that can be maintained indefinitely. Working
in Sprints serves rhythm and cadence while
improving focus, but is not for burning out people.

To assure alignment and consistency of the
collaborative work, a team of Developers has an
agreed set of work practices and standards to be
applied to the collective work. In particular, the
qualities and criteria that must be met for an
Increment to be declared “Done” are captured in a
definition of Done. This ensures a shared
understanding of the state of an Increment when
inspected. What a team of Developers requires in
terms of skills, tools, and practices is a function of
what is defined as Done—not the other way round.

A team of Developers is always accountable as a
whole, regardless of the type of work needed or
performed, or of specialized skills and focus areas
of individual players. No sub-teams, titles, or
hierarchy exist within a team of Developers.

Scrum Master

‘Scrum Master’ is a one-person player role acting
as a game master to assure that the rules of the
game are known and understood and to support
players to uncover better ways to play. The core
accountability is to guide self-organization toward
the creation of valuable outcomes.

This requires certain management skills, traits, and
insights, but it is very different from being a
traditional manager. A Scrum Master has no formal
power over people, careers, or incentives. A Scrum
Master does not control progress, budget, quality,
or tasks. A Scrum Master does support fellow
players figure out how to manage these in Scrum.

A Scrum Master leads through a vision of what can
be achieved with Scrum in terms of engagement,
creativity, and a humanized workplace. A Scrum
Master induces the continual desire to become
better players. Scrum Masters understand that
embracing Scrum doesn't occur overnight, but is a
journey. They are patiently impatient.

A Scrum Master facilitates players by making sure
that impediments are removed, elements that

Moving Your Scrum Downfield
(The Six Essential Traits of the Game)

hinder or block the work but are beyond self-
organizational control. Think organizational
expectations, directives, processes, procedures, or
structures that are at odds with the rules, values,
principles, or purpose of Scrum. This may require
coaching for behavioral change at any level of
organizations. Forming alliances with fellow Scrum
Masters comes naturally when having to challenge
the status quo, organizational or otherwise.

Removing impediments, facilitating events,
teaching techniques, supporting teams, educating
the organization, keeping the road open to
perform, to work, to innovate, to be creative are
some of the services that a Scrum Master provides.
How interventionist the services are is a mirror of
the state of Scrum within an organization.

Scrum Master accountability cannot be eliminated.
Complex work, turbulent circumstances, and
changing environments inevitably give rise to
situations and challenges for which players need
support, guidance, observations, and coaching.
No sports team has no coach. Scrum Masters can
only strive to become invisibly present.

Product Team of Scrum
Owner Developers Master
Optimizes the Creates Done Facilitates
value created Increments the game
Manages Manages Manages
the product the Sprint the
(‘what) (‘how’) environment

Exhibit 2: Accountability in Scrum

4. Transparency for a Flow of Value

Complex challenges are highly unpredictable.
Deriving value from them requires more than
harnessing or 'managing’ change. It requires
capitalizing on new insights, accumulated
experience, and unforeseen opportunities. This is
why Scrum implements empiricism.

Transparency, as the foundation of empiricism,
holds that work done and work to be done can be
fully understood at any point in time—regardless of
past hopes, dreams, and plans. The extent to
which the Scrum artifacts of Product Backlog,
Sprint Backlog, and Increment reflect reality will
impact the results and outcomes, down to the risk
of results and outcomes becoming useless and
even harmful when including unaccountable
deviations as a result of complete or partial
absence of transparency. The definition of Done is
particularly important in making the reality of
observed work fully transparent.

© Gunther Verheyen | Ullizee-Inc Page 5
Apr 2020 - Sep 2023

The Scrum artifacts support maintaining a flow of
value at a macro level by uncovering, ordering,
and delivering functions and solutions. A clearly
identified ‘product,’ as the vehicle to deliver value,
provides focus and purpose to the use of the
Scrum artifacts. Without such clear identification,
optimizing for value is hardly possible and Scrum
is hardly used effectively.

Product Backlog

Product Backlog is an emergent, ordered list of
functions and solutions that the Product Owner
deems as potentially valuable, and exposes factors
that enhance or obstruct the flow of value-like
goals, dependencies, and constraints.

Product Backlog is the primary source of work and
progress in Scrum. While the Product Owner is
accountable for its ordering, teams of Developers
are responsible for its sizing. Product Backlog is
the single source of work for teams of Developers.
A Product Owner keeps everyone with a vetted
interest updated on Product Backlog progress.

A Product Backlog reminds all players that right-
time conversations are required to elaborate on
what the work entangles. This is very different from
exhaustive lists holding exhaustively detailed
specifications. The primary value of Product
Backlog is in providing direction and uncovering
opportunities to create value—not in completeness,
precision, or detail. Product Backlog is not a tool
for trying to predict the inherently unpredictable.

The Product Owner is accountable that the Product
Backlog exists and is ordered. To maximize
transparency and assure fast and consistent
decisions, one product has one Product Backlog
ordered by one Product Owner, regardless the
number of teams of Developers involved.

Sprint Backlog

Sprint Backlog is the emergent plan for a Sprint.
Teams of Developers use it to manage the
improvements and the work done or anticipated
to most effectively turn selected functions and
solutions from the Product Backlog into Done
Increments, therein guided by the Sprint Goal.
Only a team of Developers decides what is in their
Sprint Backlog and how to manage it.

Sprint Backlog is a living artifact that is kept
accurate and realistic. Throughout a Sprint new
insights on how to achieve the Sprint Goal might
surface. Work that becomes obsolete or was
unanticipated is removed from or added to the
Sprint Backlog, no later than on a daily basis.

Increments of integrated, Done output emerge
from the collaborative work of teams of
Developers. Sprint Backlog is used to keep track
of the progress of a Sprint and not miss out on
useful adaptations. If the actual progress impacts
the forecast of Product Backlog, the Product
Owner is consulted. If no movement is radiated,
the empirical process might be in danger and the
team of Developers might be in need of help.

Moving Your Scrum Downfield
(The Six Essential Traits of the Game)

© Gunther Verheyen | Ullizee-Inc
Apr 2020 - Sep 2023

Increment

Quality and progress are assured by repeatedly
producing Increments upon defined, agreed work
practices and standards. An Increment is a solid,
meaningful body of work that is available for
inspection no later than by the end of a Sprint, at
which point it already has been released oris in a
releasable state. An Increment has no hidden or
"undone” work. It is guaranteed to comply with the
definition of Done. Adaptations to the definition of
Done may reveal work that must be done for
previous Increments first. Product is the integrated
resultant of all Increments.

Increments incorporate additions, expansions,
improvements, eliminations, and modifications.
Regardless the time of their availability, Increments
can be released when they are Done and are
deemed useful. An Increment assures that one or
more Done functions and solutions become
available for the consumers of the product.

It is good—if not essential-practice for a Product
Owner to know about usage, satisfaction, or other
indicators of the impact and value of Increments.
This must be validated against the product vision,
goals, or other ambitions. Otherwise decisions to
optimize value remain doused with opaqueness.

The definition of Done is particularly important in
assuring that an Increment is usable, stable, and of
high quality. Quality best encompasses more,
however. A Done product should exhibit the
qualities an organization envisions and wants to be
known for by its user base. A Done product
Increment should exhibit the qualities needed to
deliver or result in value. Ideally, the definition of
Done would echo valuable and exceed releasable.

The state of an Increment described in the
definition of Done is not a function of the skills
available in a team of Developers, or the tools and
practices applied, but the other way round.

5. Closing the Loops

Effective use of Scrum entails closing loops—more
loops than meet the eye.

In Scrum all work is organized in Sprints. Sprints
have a fixed length which is never more than four
weeks. Sprint length allows weighing progress in
terms of tangible output against the ability to
adapt upon feedback gathered at the macro level.
Sprint length is a factor of minimal stability and
reflects the contextual need for the frequency at
which to inspect and adapt at a strategic and
tactical level.

For the external world, Sprint is the only unit of
work and time—not days, hours, or work estimates.
A Sprint is a shielded playfield that allows creating
Done Increments of work. What happens in a
Sprint, stays in the Sprint. External authorities are
most effective by preventing distractions or
interventions during a Sprint, and not being one.

Complex work innately incorporates divergent
options. Players are required to converge regularly

Page 6

within a Sprint, not just toward its end. Full closure
by the end of a Sprint is needed to preserve
unburdened adaptability at the macro level. Open
work is not a valuable outcome of a Sprint. It
blocks creativity and openness and is a liability for
adaptability and future value creation.

';;‘2?(:’:; Valuable
Increment
—’, Scrum —

Exhibit 3: Closed-loop feedback with Scrum

A dramatic way of preventing proper closure is the
termination of an on-going Sprint. It occurs only
when the work of a Sprint becomes fundamentally
and totally invalid and cannot be replaced.

Planning a Sprint

Planning a Sprint is the opening act of a Sprint.
The players consider and collaborate on what the
most valuable functions and solutions are, why
they are worthwhile, and how to turn them into
cohesive and observable output.

Scrum defines the Sprint Planning event for this
purpose. The event takes as long as needed to
meet its goal, but never more than eight hours.
That goal is thus to choose direction and allow
embarkment-rather than predicting exact output.

The players choose how to organize Sprint
Planning. Experience shows how some select
multiple functions and solutions first, identify the
work involved, and update the selection as they
find they have more or less capacity. Others iterate
dynamically between the what and the how of
individual functions or solutions. Others do
something in between. The players decide but
assure alignment with one Sprint Goal.

The Product Owner shares and clarifies Product
Backlog so the team of Developers can anticipate
and map out work and activities to be performed.
Only the team of Developers determines how
much it reasonably can achieve within the Sprint. A
forecast of work for a Sprint is tuned to the Sprint
length—not the other way round.

The event meets its goal if Sprint Backlog holds
enough work to embark and the team of
Developers has decided how to start turning
selected functions and solutions into observable
output. Additional work and new insights are
assessed and managed via Sprint Backlog in due
time during the Sprint. The Sprint Goal expresses
what makes the Sprint worth the energy and the
investment—an envisioned state of the product or
some other meaningful outcome.

Managing for Progress

Protected from external distractions, the players
continue engaging in collaborative work to move

Moving Your Scrum Downfield
(The Six Essential Traits of the Game)

as a unit up the field toward achieving the next
game level, the Sprint Goal.

At any time Sprint Backlog reflects what is needed
to achieve the Sprint Goal. Problems and progress
toward the Sprint Goal can be shared and
discussed at any time, but no later than on a daily
basis. Scrum defines the Daily Scrum event for this
purpose, with a time-box of 15 minutes. It serves
to identify and agree over the upcoming Sprint
work, in particular until the next Daily Scrum.

The team of Developers applies its agreed work
practices to incrementally create Done output,
satisfy the Sprint Goal, and generate valuable
outcomes. Feedback loops of development are
closed regularly and repeatedly within the Sprint
to assure alignment and consistency as well as to
catch problems and errors early. Consider the
propagation of errors that, if not detected early,
potentially endanger proper closure of the Sprint.

If during the Sprint it is discovered that
substantially different, more, or less work is
needed or possible than planned for, the forecast
is renegotiated with the Product Owner. When a
body of work complies with the definition of Done,
it can be shared as an Increment with the product’s
consumers—upon the Product Owner'’s consent.

Sprint Reflections

Sprint reflections serve closure of a Sprint. The
players and invited guests collaborate on why the
Sprint was undertaken, what functions and
solutions are delivered in Increment(s) against this
Sprint Goal, and what Product Backlog currently
holds. They reflect on how the Sprint went to
define their working process for the next game
round. Inspection without adaptation is pointless.

The definition of Done is particularly important in
assuring that all have a shared understanding of
the qualities and state of the work being observed.
It is imperative that an Increment of product has
all the characteristics of the final...product. Paper
reports or presentations don't meet that demand.

Scrum defines two events for these closing
activities: Sprint Review and Sprint Retrospective.

Sprint Review starts with a focus on why a Sprint
was undertaken and what was achieved. The
Product Owner connects the team(s) of
Developers with invited stakeholders and
consumers for this purpose. Product Backlog is
used to assess progress along with major changes
that impacted it. All attendees collaborate and
share ideas on how to further improve the value of
the product in the next Sprint(s), which is captured
in an updated Product Backlog. The event takes
the time needed to meet this goal, but never more
than four hours.

Sprint Retrospective serves a deep dive on how
the Sprint went. Many aspects of the work are
covered, including (but not limited to): team
engagement, Done-ness and the potential value
of the Increment(s), the use of Scrum, practices
and techniques, social aspects, collaboration, team

© Gunther Verheyen | Ullizee-Inc Page 7
Apr 2020 - Sep 2023

values, team agreements. Although improvements
may be implemented at any time, they are
identified no later than at the Sprint Retrospective.
A Sprint Retrospective provides a formal
opportunity to reflect on and define the actual
work process. The event takes as long as needed
to meet this goal, but never more than three hours.

; Sprint Why ;
| _ |
What — What |
i o i
: How How

Exhibit 4: Information circulation at the macro level

6.The Scrum Values

Scrum is more effective through spirited
collaboration, for which it provides a frame. Scrum,
actually, is more about behavior than it is about
process. Values drive behavior. The Scrum Values
of Commitment, Focus, Openness, Respect, and
Courage give direction to working in Scrum, as a
compass. All interactions and decisions, the steps
taken, the tactics chosen to apply the rules of
Scrum should re-enforce these values, not
diminish or undermine them.

+ Commitment shows in the working spirit of the
players in terms of motivation, dedication, and
engagement. It is about the actions and the
intensity of the efforts, not about exact and
predicted content and volume of output.

+ Focus is increased through the balanced but
distinct accountabilities of Scrum. Time-boxing
all work encourages players to focus on what is
imminent now as the future in complex
environments is highly uncertain.

+ Openness shows in the attitude of all players. It
is reflected in their collaboration, interactions,
and relationships, in how they deal with change
and with differences in skills, personalities, and
opinions.

+ Respect is essential for self-organizing groups to
navigate complexity. It requires respecting the
people aspects of the work, rules, agreements,
skills, practices, ideas, experience, and
viewpoints, while at times respectfully
challenging them.

+ Courage is much needed in complex work.
Confronted with uncertainty, it takes courage to
act, to self-organize, to uphold quality, to
embrace imperfection and ambiguity, to apply
empiricism, to turn change into a source of
inspiration and innovation, to enact Scrum and
to live...the Scrum Values.

How the six essential traits of the game are indicative of Scrum coming to life:

1. Scrum Is Simple, Yet Sufficient. The players unfold the potential of Scrum by using the
simple rules that apply and explore how tactics, interactions, behaviors, and the six

essential traits make Scrum work.

2.Scrum'’s DNA. The players form a self-organizing unit around the challenge of
collectively creating observable, Done Increments of work, while employing empiricism to

manage all work and progress.

3. Players Demonstrate Accountability. The players contribute to high-quality, valuable
system outcomes through spirited collaboration, and sharing and challenging rules,
agreements, skills, practices, ideas, and viewpoints.

4. Transparency for a Flow of Value. The players use the Scrum artifacts to uphold
transparency over all the work done and the work to be done, manage for a flow of value,
and preserve the ability to capitalize on unforeseen opportunities.

5. Closing the Loops. The players regularly and repeatedly close the many intertwined
loops within a Sprint toward full closure by the end of a Sprint, thereby preserving

unburdened adaptability at the macro level.

6. The Scrum Values. The Scrum Values of Commitment, Focus, Openness, Respect, and
Courage take prominence in the behaviors, relationships, actions, and decisions of the

players and their ecosystem.

Moving Your Scrum Downfield
(The Six Essential Traits of the Game)

© Gunther Verheyen | Ullizee-Inc Page 8
Apr 2020 - Sep 2023

About the author

Gunther Verheyen calls himself an independent Scrum Caretaker on a journey of humanizing
the workplace with Scrum. He is a longtime Scrum practitioner who started applying Scrum
in 2003 and worked with various teams and organizations in various industries since then.
He has published two acclaimed books about Scrum, was the partner of Ken Schwaber (co-
creator of Scrum) and Director of the “Professional Scrum” series at Scrum.org.

Gunther Verheyen ventured into IT and software development after graduating as an
Industrial Engineer in Electronics in 1992. His Agile journey started with eXtreme
Programming and Scrum in 2003. Years of dedication and employing Scrum in diverse
circumstances followed. In 2010, Gunther became the inspiring force behind some large-
scale enterprise transformations. In 2011, he became a Professional Scrum Trainer.

Gunther founded Ullizee-Inc in 2013 to partner exclusively with Ken Schwaber. He
represented Ken and his organization Scrum.org in Europe, while maintaining its Professional
Scrum series and shepherding its global network of trainer/coaches. Gunther is co-creator of
Agility Path, EBM (Evidence-Based Management), and the Nexus framework for Scaled
Professional Scrum at Scrum.org.

Since 2016, Gunther is continuing his journey of humanizing the workplace as an
independent Scrum Caretaker—a connector, writer, trainer, and speaker. He helps
organizations re-imagine their Scrum and re-emerge the organization around their Scrum to
create a more humane and thereby more productive workplace.

Gunther created his book Scrum - A Pocket Guide in 2013, with a 2nd edition published in
2019 and a 3 edition in 2021. He was the editor of the book 97 Things Every Scrum
Practitioner Should Know (2020); a collection of essays from field experts across the world.
Several translations of his work are available.

When not traveling for Scrum and humanizing the workplace, Gunther lives and works in
Antwerp, Belgium.

Check out his website for more information: https://guntherverheyen.com/

https://guntherverheyen.com/

